Effect modification and non-collapsibility together may lead to conflicting treatment decisions: A review of marginal and conditional estimands and recommendations for decision-making

Mar 10, 2025·
David M. Phillippo
Antonio Remiro-Azócar
Antonio Remiro-Azócar
,
Anna Heath
,
Gianluca Baio
,
Sofia Dias
,
A. E. Ades
,
Nicky J. Welton
· 0 min read
Abstract
Effect modification occurs when a covariate alters the relative effectiveness of treatment compared to control. It is widely understood that, when effect modification is present, treatment recommendations may vary by population and by subgroups within the population. Population-adjustment methods are increasingly used to adjust for differences in effect modifiers between study populations and to produce population-adjusted estimates in a relevant target population for decision-making. It is also widely understood that marginal and conditional estimands for non-collapsible effect measures, such as odds ratios or hazard ratios, do not in general coincide even without effect modification. However, the consequences of both non-collapsibility and effect modification together are little-discussed in the literature. In this article, we set out the definitions of conditional and marginal estimands, illustrate their properties when effect modification is present, and discuss the implications for decision-making. In particular, we show that effect modification can result in conflicting treatment rankings between conditional and marginal estimates. This is because conditional and marginal estimands correspond to different decision questions that are no longer aligned when effect modification is present. For time-to-event outcomes, the presence of covariates implies that marginal hazard ratios are time-varying, and effect modification can cause marginal hazard curves to cross. We conclude with practical recommendations for decision-making in the presence of effect modification, based on pragmatic comparisons of both conditional and marginal estimates in the decision target population. Currently, multilevel network meta-regression is the only population-adjustment method capable of producing both conditional and marginal estimates, in any decision target population.
Type
Publication
In press, Research Synthesis Methods